精品亚洲a∨无码专区毛片-精品亚洲aⅴ无码午夜在线-精品亚洲aⅴ无码午夜在线观看-精品亚洲aⅴ无码一区二区三区-精品亚洲aⅴ无码专区毛片-精品亚洲aⅴ在线

官方微信|手機版

產品展廳

產品求購企業資訊會展

發布詢價單

化工儀器網>產品展廳>生命科學儀器>芯片系統>微流控芯片>SKU: HOL-1 aimbiotech代理 Luer Connectors LUC-...

分享
舉報 評價

SKU: HOL-1 aimbiotech代理 Luer Connectors LUC-1 (36/pack)

具體成交價以合同協議為準

聯系方式:李勝亮查看聯系方式

聯系我們時請說明是化工儀器網上看到的信息,謝謝!


世聯博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡稱為世聯博研。世聯博研是一家集進口科研儀器代理銷售以及實驗技術服務于一體的技術公司。世聯博研專注生物力學和3D生物打印前沿科研設備代理銷售及科研實驗項目合作服務,內容涵蓋了血管力學生物學、生物力學建模仿真與應用、細胞分子生物力學、組織修復生物力學、骨與關節生物力學、口腔力學生物學、眼耳鼻咽喉生物力學、康復工程生物力學、生物材料力學與仿生學、人體運動生物力學等生物力學研究以及生物材料打印、打印樣品生物力學性能測試分析的前沿領域科研利器和科研服務。

世聯博研的客戶范圍:
科研院所單位、生物醫學科研高校、醫院基礎科研單位等。

世聯博研公司代理的品牌具有:
1)近10年長期穩定的貨源
2)以生物力學、細胞力學、細胞生物分子學、生物醫學組織工程、生物材料學為主,兼顧其他相關產品線
3)提供專業產品培訓和銷售培訓
4)良好的技術支持
5)已成交老客戶考證
6)每年新增的貨源。

細胞應力加載儀,3細胞打印機,NanoTweezer新型激光光鑷系統,PicoTwist磁鑷,美國NeuroIndx品牌Kuiqpick單細胞捕獲切割系統

AIM BIOTECH是新加坡一家專注于創新性工具研發的創業型公司,其應用領域涵蓋科學研究、藥物開發和臨床診斷范疇。AIM BIOTEC為科研市場做出的*份貢獻是開發出一款易于操作的、模塊化的平臺,該平臺成功地將3D細胞培養納入了科研人員研究工作體系之中。
AIM BIOTECH 3D細胞培養芯片概述
AIM的3D細胞培養芯片透氣性好,而且用戶可以通過選擇不同的水凝膠,在間隔的3D和2D空間進行不同類型細胞的培養。同時可以通過對化學物濃度梯度和流體的調控很好地模擬符合用戶特定需求的微環境。





 

3D Cell Culture Chip
3-channel design : 3D gel region flanked by 2 media channels

Picture

  • Microscope slide format 75mm X 25mm
  • Compatible with all polymerisable gels including collagen, fibrinogen, Matrigel, etc. and combinations thereof
  • Gas permeable laminate for effective gas exchange
  • Optically clear and compatible with phase contrast, fluorescence and confocal microscopy
  • Enables monotypic or organotypic co-culture models
  • Enables the control of interstitial flow across the 3D gel region
  • Enables the control of chemical gradients across the 3D gel region
  • Sterile & ready-to-use
  • Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration
  • Designed for modular expansion with AIM Luer Connectors
  • Fits into AIM Microtiter Plate Holders for easy handling and stacking
GENERAL PROTOCOLSAPPLICATION-SPECIFIC PROTOCOLS

Picture

Picture

BUY NOW

Compatible with all polymerisable gels

Dedicated 3D regions in AIM chips can be filled with collagen, fibrinogen & other hydrogels or Matrigel™ & other extracellular matrixes (ECM) to suit your experimental needs. The hydrogels can be used on their own or in combination with other components to form 3D microenvironments of your choice (stiffness, pH and material compositions). 
The miniature posts that border the 3D region are designed to set up a vertical gel wall with minimal buildup of resistance during the gel filling process. Cells can be homogeneously dispersed or included as aggregates into the gel.

Picture

Gas exchange

One of the key advantages of PDMS chips is the material's gas permeability, which enables cells cultured within PDMS devices to 'breathe'. However, PDMS absorbs hydrophobic molecules from solution, making it unsuitable for studies investigating hydrophobic drugs, chemicals or biological molecules.
AIM chips have overcome the problem by using a gas-permeable plastic to laminate the device. Gas exchange takes place effectively, allowing you to set up normoxic or hypoxic culture environments as needed. 

Picture

Optically clear

AIM chips are made from polymers with an excellent light transmittance rate of 92%. You can visualise your experiments with phase contrast, epifluorescence, 2-photon and confocal microscopy. 

Picture

Endothelial cell monolayer in 2D channel forming a vertical wall on collagen gel (confocal)

Picture

Angiogenic sprouts in collagen gel (confocal)

Enables monotypic or organotypic co-culture models

Different cell types can be cultured together in the same channel or compartmentalised into different channels, allowing users to design models to represent different biological systems. Future AIM chips will have more 3D & 2D channel designs to cater to your needs.

Picture

Picture

Enables the control of interstitial flow across the 3D region

The interstitial flow across the 3D hydrogel can be controlled by setting up a pressure gradient between the flanking channels. This can be achieved by having a larger media volume in one media channel than the other, or by setting shear flow regimes that establish a pressure differential. 

Picture

Enables the control of chemical gradients across the 3D region

A chemical concentration gradient can be set up across the porous 3D hydrogel easily by using a higher concentration of the chemical in a channel and allowing diffusion to take place.  This feature is very useful for studies where directional cues of effectors are critical, including angiogenesis, cell migration and neurite guidance 

Picture

Sterile & ready-to-use

AIM chips are individually packaged for your convenience. All chips are sterile and are ready for use right out of the package. AIM chips let you focus on your experiments, rather than on device preparation.

Picture

Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration

Due to the small culture volumes of microfluidic devices, culture media typically has to be replenished every day. Vacuum aspiration is used to remove old media before pipetting new media into the device. Media ports in AIM chips are designed with troughs to let users rapidly aspirate old media out without the risk of accidentally aspirating all the media & cells from the device. 

Picture

Cross-section of media ports during aspiration. Positioning the tip in the trough prevents over-aspiration.

The publications listed below were conducted on lab-made devices that form the basis of AIM Biotech chips.

TECHNOLOGY

Key publications

  1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD.  Lab Chip, 2008, 8, 1468-1477.
  2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
  3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S.  Nature Prot, 7(7):1247-1259, 2012, PMID: 22678430
  4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD.  Integr Biol (Camb). 2012 Jun 7. PMID 22722695
  5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD.   Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID: 22869695
  6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD.  Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID: 23172153 
  7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD.  Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID: 24550267
  8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD.  Proceedings of the National Academy of Sciences, pp. 201417115, 2014






  9.  
  10.  
  11.  
  12.  
  13.  

Publications

  1. A microfluidic platform for studying the effects of small temperature gradients in incubator environment. Das SK, Chung S, Zervantonakis I, Atnafu J, Kamm RD. Biomicrofluidics, 2008, 2, 03106.
  2. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD.  FASEB J, 2009, 23(7):2155-64.
  3. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Chung S, Sudo R, Zervantonakis I, Rimchala T, Kamm RD.  Adv Mat,Dec 18;21(47):4863-7. doi: 10.1002/adma.200901727.
  4. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis IK, Chung S, Sudo R, Zhang M, Charest JL, Kamm RD. Intern J Micro-Nano Scale Transport, 1(1): 27-36, 2010.
  5. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo S, Vickerman V, Zervantonakis IK, Kamm RD.  Annals Biomed Engineering, 2010, DOI: 10.1007/s10439-010-9899-3.
  6. Determining cell fate transition probabilities to VEGF/Ang 1 levels: Relating computational modeling to microfluidic angiogenesis studies. Das A, Lauffenburger DA, Asada HH, Kamm RD.  Cellular and Molecular Bioengineering. 2010 Dec; 3(4):345-360.
  7. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD.  Lab Chip. 2011 Feb 7; 11 (3) :497-507. PMID:21107471.
  8. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD.  Biomicrofluidics. 2011 Mar 30; 5(1):13406. PMID:21522496.
  9. Hot embossing for fabrication of a microfluidic 3D cell culture platform. Jeon JS, Chung S, Kamm RD, Charest JL. Biomed Microdevices. 2011 Apr; 13(2):325-33. PMID:21113663; PMC3117225.
  10. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc Natl Acad Sci U S A. 2011 Jul 5; 108 (27):11115-20. PMID:21690404; PMCID: PMC3131352.
  11. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, Sudo R, Kamm RD, Chung S.  Lab Chip. 2011 Jul 7; 11 (13) :2175-81. PMID:21617793.
  12. Sprouting angiogenesis under a chemical gradient regulated by interaction with endothelial monolayer in microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S.  Anal Chem. Epub 2011 Oct 10. PMID: 21985643.
  13. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, Kamm RD, Asada H.  PLoS One, 7(5), 2012. PMID: 22662145
  14. In vitro angiogenesis assay for the study of cell encapsulation therapy. Choong Kim, Seok Chung, Liu Yuchun, Min-Cheol Kim Jerry K. Y. Chan, H. Harry Asada and Roger D. Kamm.  Lab Chip, 2012, DOI:10.1039/C2LC40182G PMID: 22722695
  15. A Novel Microfluidic Platform for High-Resolution Imaging of a Three-Dimensional Cell Culture under a Controlled Hypoxic Environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD.   Lab Chip, Nov 21;12(22):4855-63. doi: 10.1039/c2lc40306d. 
  16. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapali CR, Ozdinler PH, Pasquina L, Chung S, Varner J, DeValance S, Kamm R, Macklis JD.  Integr Biol, 4, 1398-1405, 2012, DOI: 10.1039/c2ib20019h
  17. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD.  PLoS ONE, 2012;7(12):e50582. doi: 10.1371/journal.pone.0050582. PMID: 23226527
  18. Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Lee E-S, Kamm RD, Kim J-H, Chung S.  Adv Healthc Mater. 2013 Jun;2(6):790-4. doi: 10.1002/adhm.201200320. Epub 2012 Nov 26. PMID: 23184641
  19. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, Kamm RD, Kim YJ, Chung S. Lab Chip. 2012 Oct 21;12(20):3861-5. PMID: 22903230
  20. A Three-Dimensional Microfluidic Tumor Cell Migration Assay to Screen the Effect of Anti-Migratory Drugs and Interstitial Flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, Tanishita K, Sudo R.  Microfluid Nanofluid, 2012,  DOI 10.1007/s10404-012-1104-6
  21. In vitro model of tumor cell extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS One. 2013;8(2):e56910. doi: 10.1371/journal.pone.0056910. Epub 2013 Feb 20. PMID: 23437268
  22. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr Biol (Camb). 2013 Sep 23; 5(10):1262-71. doi: 10.1039/c3ib40149a. PMID: 23995847
  23. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M.  Integr Biol (Camb), 2013, DOI: 10.1039/c3ib40082d.
  24. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. doi: 10.1089/ten.TEC.2013.0370. Epub 2013 Dec 13. PMID: 24151838
  25. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD.  Drug Discov Today. 2013 Dec 17. pii: S1359-6446(13)00424-8. doi: 10.1016/j.drudis.2013.12.006. [Epub ahead of print] PMID: 24361339
  26. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Charest JL, Moretti M, Kamm RD. Biomaterials. 2014 Mar;35(8):2454-61. doi: 10.1016/j.biomaterials.2013.11.050. Epub 2013 Dec 31. PMID: 24388382
  27. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C.  Mol Pharm. 2014 Jul 7;11(7):2022-9. doi: 10.1021/mp500054h. Epub 2014 Feb 24. PMID: 24533867 
  28. In Vitro Microvessel Growth and Remodeling within a Three-dimensional Microfluidic Environment. Park YK, Tu TY, Lim SH, Clement IJM, Yang SY, Roger D. Kamm RD.  Cell Mol Bioeng. 2014 Mar 1;7(1):15-25. PMID: 24660039 
  29. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, Reibel JB, Tamayo P, Godfrey JT, Qian ZR, Page AN, Maciag K, Chan EM, Silkworth W, Labowsky MT, Rozhansky L, Mesirov JP, Gillanders WE, Ogino S, Hacohen N, Gaudet S, Eck MJ, Engelman JA, Corcoran RB, Wong KK, Hahn WC, Barbie DA. Cancer Discov. 2014 Apr;4(4):452-65. doi: 10.1158/2159-8290.CD-13-0646. Epub 2014 Jan 20.
  30. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD.  Integr Biol (Camb). 2014 May;6(5):555-63. doi: 10.1039/c3ib40267c. PMID: 24676392
  31. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, Lewis R, Daigh C, Hansen TD, Mann DA, Thomson JA, Griffith LG, Kamm RD, Schwartz MP, Murphy WL.  Stem Cell Rev. 2014 Jun;11(3):511-25 doi: 10.1007/s12015-014-9549-5 PMID: 25190668
  32. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, Herndon J, Cohoon TJ, Fleming T, Tamayo P, Mesirov JP, Ogino S, Wong KK, Ellis MJ, Hahn WC, Barbie DA, Gillanders WE.  J Clin Invest. 2014 Dec;124(12):5411-23. doi: 10.1172/JCI75661. Epub 2014 Nov 3.
  33. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, Zhu SJ, Zhang Y Ercan D, Liao RG, Capelletti M, Zhou W, Hur W, Kim N, Sim T, Gaudet S, Barbie DA, Yeh JR, Yun CH, Hammerman PS, Mohammadi M, Jänne PA, Gray NS. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4869-77. doi: 10.1073/pnas.1403438111. Epub 2014 Oct 27.
  34. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm. Lab Chip. 2014 Dec 3;15(1):301-10. doi: 10.1039/c4lc00866a. PMID: 25370780
  35. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang TM, Tu TY, Penny HL, Wong SC, Kamm RD, Thiery JP.  Oncotarget 6 (28), 25295-25307, 2015
  36. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. J Bai, TY Tu, C Kim, JP Thiery, RD Kamm.  Oncotarget, 2015 Nov 3;6(34):36603-14. doi: 10.18632/oncotarget.5464.
  37. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Small. 2016 Feb;12(5):688. doi: 10.1002/smll.201670025.
  38. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong JS, Kamm RD, Huh D, Sohn LL, Chung S.  ScI Rep. 2015 Dec 21;5:18290. doi: 10.1038/srep18290.
  39. Microfluidics: A New Tool for Modeling Cancer–Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD.  Trends in Cancer, Volume 2, Issue 1, p6–19, January 2016.
Flexcell® Chipmate Kits 
with AIM Biotech Microfluidic 3D Cell Culture Chips
Catalog Page AIM Biotech Protocols 

Search FAQs

 

Microfluidic 3D cell culture chip for running multiple assays including cell migration, monotypic or organotypic co-culture, cell invasion, and angiogenesis.

  • AIM Biotech's 3D Cell Culture Chip with a central hydrogel channel flanked by two media channels (see Fig. 1).
  • AIM Biotech's chips are gas permeable, in microscope slide format (75 mm X 25 mm), and optically clear. Compatible with phase contrast, fluorescence and confocal microscopy.
  • Flexcell®'s HiQ Flowmate® dual syringe pump with independent fluid drive system capable of constant steady, pulsatile, continuous, and oscillating flow modes.
  • Flexcell®'s Collagel® or Thermacol® collagen kits for creating 3D hydrogels.
  • Chips allow users to co-culture different cell types in discrete 3D and 2D compartments.
  • Chips can be used to study interstitial flow across the 3D gel region.

 



化工儀器網

采購商登錄
記住賬號    找回密碼
沒有賬號?免費注冊

提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

溫馨提示

該企業已關閉在線交流功能

主站蜘蛛池模板: 国产午夜理论片YY8840Y| 国产做爰又粗又大又深人物| 亚洲欧美国产成人综合不卡| 熟女人妇成熟妇女系列视频| 岛国va毛片高清| 国产一区影视| 国产午夜在线观看免费| 综合另类| 久久午夜免费视频| 99精品视频在线免费观看| 色片段高清在线| av中文片在线观看| 亚洲少妇三级片网站在线观看免费| 国产精品日韩无码| 国产精品香蕉在线一区二区| 精品人妻一区二区三区| 精品国产一区二区贰佰信息网| 欧美激情一区二区三区成人 | 欧美高清一区二区| 久久中文字幕综合不卡一二区| 午夜亚洲国产理论片中文飘| 成人无码区免费A片视频日本| 小黄人福利导航| 国产精品毛片高清在线完整版| 凹凸精品熟女在线观看| 含羞草官网一线二线人口| 亚洲AV国产爽歪歪无码| 久久国产精品亚洲国产女人| 亚洲成av人影片在线观看| 欧美精品九九久久久久久久久| 无码又爽又刺激a片涩涩| 日日奸| 99久久精品免费观看区一 | 日本久久久久久级做爰片| 久久久国产一区二区三区| 91制服丝袜| 麻豆www久久国产精品| 久久久免费观看| 欧美日韩国| 亚洲一级在线| 欧美亚洲中文精品字幕|