帶你了解顯微拉曼成像光譜儀的工作原理
閱讀:2173 發布時間:2020-4-6
顯微拉曼成像光譜儀對于普通人來說還是挺陌生的,一般在科研院所、高等院校物理和化學實驗室、生物及醫學領域等這類地方比較常見,用于光學方面和研究物質成分的判定與確認;拉曼光譜儀還可以應用于刑偵方面,進行毒品的檢測,還可以應用于珠寶行業,進行寶石的鑒定。
顯微拉曼成像光譜儀外形構造比較簡單,設計更加靈活,操作也很簡便,還可以手持使用,也可以通過集成的小瓶取樣模式使用,還可以固定在機器人手臂上遠程遙控使用。特別是測量的速度又快又準確,以地波數的測量能力著稱。
顯微拉曼成像光譜儀的工作原理:
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^~10^,該散射光不僅傳播方向發生了改變,而且該散射光的頻率也發生了改變,從而不同于激發光(入射光)的頻率,因此稱該散射光為拉曼散射。在拉曼散射中,散射光頻率相對入射光頻率減少的,稱之為斯托克斯散射,因此相反的情況,頻率增加的散射,稱為反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射強得多,拉曼光譜儀通常大多測定的是斯托克斯散射,也統稱為拉曼散射。
散射光與入射光之間的頻率差v稱為拉曼位移,拉曼位移與入射光頻率無關,它只與散射分子本身的結構有關。拉曼散射是由于分子極化率的改變而產生的(電子云發生變化)。拉曼位移取決于分子振動能級的變化,不同化學鍵或基團有特征的分子振動,ΔE反映了能級的變化,因此與之對應的拉曼位移也是特征的。這是拉曼光譜可以作為分子結構定性分析的依據。