請輸入產品關鍵字:
郵編:201822
聯系人:張先生
電話:86-21-33519402
傳真:86-21-33519403
手機:13817745992
留言:發送留言
網址:
商鋪:http://www.24590.cn/st146850/
伺服閥工作原理及運行維護
點擊次數:755 發布時間:2014-6-10
伺服閥的工作原理及運行維護
電液伺服閥是電液轉換元件,它能把微小的電氣信號轉換成大功率的液壓輸出。其性能的優劣對電液調節系統的影響很大,因此,它是電液調節系統的核心和關鍵。為了能夠正確使用電液調節系統,必須了解電液伺服閥的工作原理。
1、電液伺服閥的分類
1) 按液壓放大級數可分為單級電液伺服閥,兩級電液伺服閥,三級電液伺服閥。
2) 按液壓前置級的結構形式,可分為單噴嘴擋板式,雙噴嘴擋板式,滑閥式,射流管式和偏轉板射流式。
3) 按反饋形式可分為位置反饋式,負載壓力反饋式,負載流量反饋式,電反饋式。
4) 按電機械轉換裝置可分為動鐵式和動圈式。
5) 按輸出量形式分為流量伺服閥和壓力控制伺服閥。
2、電液伺服閥結構及工作原理(以雙噴嘴擋板為例)
雙噴嘴擋板式力反饋二級電液伺服閥由電磁和液壓兩部分組成。電磁部分是永磁式力矩馬達,由*磁鐵,導磁體,銜鐵,控制線圈和彈簧管組成。液壓部分是結構對稱的二級液壓放大器,前置級是雙噴嘴擋板閥,功率級是四通滑閥。畫法通過反饋桿與銜鐵擋板組件相連。
力矩馬達把輸入的電信號(電流)轉換為力矩輸出。無信號時,銜鐵有彈簧管支撐在上下導磁體的中間位置,*磁鐵在四個氣隙中產生的極化磁通是相同的力矩馬達無力矩輸出。此時,擋板處于兩個噴嘴的中間位置,噴嘴兩側的壓力相等,滑閥處于中間位置,閥無液壓輸出;若有信號時控制線圈產生磁通,其大小和方向由信號電流決定,磁鐵兩極所受的力不一樣,于是,在磁鐵上產生磁轉矩(如逆時針),使銜鐵繞彈簧管中心逆時針方向偏轉,使擋板向右偏移,噴嘴擋板的右側間隙減小而左側間隙增大,則右側壓力大于左側壓力,從而推動滑閥左移。同時,使反饋桿產生彈性形變,對銜鐵擋板組件產生一個順時針方向的反轉矩。當作用在銜鐵擋板組件上的電磁轉矩、彈簧管反轉矩反饋桿反轉矩等諸力矩達到平衡時,滑閥停止移動,取得一個平衡位置,并有相應的流量輸出。
滑閥位移,擋板位移,力矩馬達輸出力矩都與輸出的電信號(電流)成比例變化。
3、電液伺服閥的常見故障
1)力矩馬達部分
a.線圈斷線:引起閥不動,無電流。
b.銜鐵卡住或受到限位:原因是工作氣隙內有雜物,引起閥門不動作。
c.球頭磨損或脫落:原因是磨損,引起伺服閥性能下降,不穩定,頻繁調整。
d.緊固件松動:原因是振動,固定螺絲松動等,引起零偏增大。
e.彈簧管疲勞:原因是疲勞,引起系統迅速失效,伺服閥逐漸產生振動,系統震蕩,嚴重的管路也振動。
f.反饋桿彎曲:疲勞或人為損壞,引起閥不能正常工作,零偏大,控制電流可能到zui大。
2)噴嘴擋板部分
a.噴嘴或節流孔局部或全部堵塞:原因是油液污染。引起頻響下降,分辨降率低,嚴重的引起系統不穩定。
b.濾芯堵塞:原因是油液污染。引起頻響下降,分辨率降低嚴重的引起系統擺動。
3)滑閥放大器部分
a.刃邊磨損:原因是磨損,引起泄露,流體噪聲大,零偏大,系統不穩定。
b.徑向濾芯磨損:原因是磨損。引起泄露增大,零偏增大,增益下降。
c.滑閥卡滯:原因是油液污染,滑閥變形。引起波形失真,卡死。
4)其他部分
密封件老化:壽命已到或油液不符。引起閥內外滲油,可導致伺服閥堵塞。
4、電液調節系統有電液伺服閥故障引起的常見故障
1)油動機拒動
在機組啟動前做閥門傳動試驗時,有時出現個別油動機不動的現象,在排除控制信號故障的前提下,造成上述現象的主要原因是電液伺服閥卡澀。盡管在機組啟動前已進行油循環且油質化驗也合格,但由于系統中的各個死角是未知不可能*循環沖洗,所以一些顆粒可能在伺服閥動作過程中卡澀伺服閥。
2)汽門突然失控
在機組運行過程中,有時在控制指令不變的情況下,汽門突然全開或全關,造成上述現象的主要原因是電液伺服閥堵塞。主要是油中的臟物堵塞伺服閥的噴嘴擋板處,造成伺服閥突然向一個方向動作,導致油動機向一個方向運動到極限未知,使汽門失去控制。
3)氣門擺動
氣門擺動是較常見的故障現象,在排除控制信號故障的前提下,伺服閥工作不穩定是主要原因。伺服閥的內漏大,分辨率大和零區不穩定,均可能引起電調系統的擺動。伺服閥的分辨率增大,是伺服閥不能很快響應控制系統的指令,容易引起系統的超調,導致系統在一定范圍內不停調整,造成氣門擺動。伺服閥閥口磨損,不但引起伺服閥泄露增大,而且會引起伺服閥零區不穩定,使伺服閥長期處于調整狀態,嚴重時會引起氣門擺動。
4)油動機遲緩率大
造成此現象的原因很多,伺服閥的流量增益低,壓力增益低以及伺服閥濾芯堵塞引起伺服閥分辨率過大等,都可能增大油動機遲緩率。解決辦法是嚴格控制燃燒油質,定期檢查伺服閥。
5) 油動機關不到位
在控制信號和機械部分沒有問題的前提下,造成油動機關不到位的主要原因為伺服閥的零偏不對。
5、運行中抗燃油的維護
系統的結構設計:汽輪機調速系統的結構對抗燃油的使用壽命有直接的影響,因此,系統設計應考慮以下因素:
1)系統應安全可靠。抗燃油應采用獨立的管路系統,以免礦物油、水分、等泄露至燃油中造成污染。系統管路中盡量減少死角,以利于沖洗系統。
2) 油箱容量大小適宜,油箱用于儲存系統的全部用油,同時還起著分離空氣和機械雜質的作用。如果油箱容量設計過小,抗燃油在油箱中停留時間短,起不到分離作用,會加速油質劣化,縮短抗燃油的使用壽命。
結束語:
建議今后應定期對伺服閥進行更換并送到機構進行必要的檢測和校驗,以防止因伺服閥故障而導致閥門擺動及負荷波形等不安全因素的發生;其次應對液壓油進行定期檢測,定期濾油,以保證機組安全穩定運行。
imes ?? RmH8 H?7 ansi-font-family: "Times New Roman"'>位編碼器。這樣的編碼器是由光電碼盤的機械位置決定的,它不受停電、干擾的影響。
編碼器由機械位置決定的每個位置是*的,它無需記憶,無需找參考點,而且不用一直計數,什么時候需要知道位置,什么時候就去讀取它的位置。這樣,編碼器的抗干擾特性、數據的可靠性大大提高了。
2、從單圈值編碼器到多圈值編碼器
旋轉單圈值編碼器,以轉動中測量光電碼盤各道刻線,以獲取*的編碼,當轉動超過360度時,編碼又回到原點,這樣就不符合編碼*的原則,這樣的編碼只能用于旋轉范圍360度以內的測量,稱為單圈值編碼器。
如果要測量旋轉超過360度范圍,就要用到多圈值編碼器。
編碼器生產廠家運用鐘表齒輪機械的原理,當中心碼盤旋轉時,通過齒輪傳動另一組碼盤(或多組齒輪,多組碼盤),在單圈編碼的基礎上再增加圈數的編碼,以擴大編碼器的測量范圍,這樣的編碼器就稱為多圈式編碼器,它同樣是由機械位置確定編碼,每個位置編碼*不重復,而無需記憶。
多圈編碼器另一個優點是由于測量范圍大,實際使用往往富裕較多, 這樣在安裝時不必要費勁找零點, 將某一中間位置作為起始點就可以了,而大大簡化了安裝調試難度。